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Abstract

Computer viruses are an extremely important aspect of computer security, and understanding
their spread and extent is an important component of any defensive strategy. Epidemiological
models have been proposed to deal with this issue, and we present one such here. We consider
a modi0cation of the Susceptible–Infected–Susceptible (SIS) epidemiological model as a model
of computer virus spread. This model includes a reintroduction parameter, which models the
rerelease of a computer virus, or the introduction of a new virus. This is a more realistic model
of computer virus spread than the standard SIS model, and can be used to understand the behavior
of the quasi-stationary regime of the SIS model.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Computer viruses have cost billions of dollars since their invention in the 1980s.
Actual 0gures are somewhat speculative, but have been reported to be $12.1 billion
in 1999, $17.1 billion in 2000 and $10.7 billion for the 0rst three quarters of 2001
(Abreu, 2001). Thus, methods to analyze, track, model, and protect against viruses are
of considerable interest. This paper describes some methods from epidemiology that
are of value in understanding the spread of computer viruses. We will discuss some
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elementary epidemic models, and show how they relate to the problem of modeling
the spread of computer viruses.
The model investigated is the Susceptible–Infected–Susceptible (SIS) model. In this

model, susceptibles (labeled S) are susceptible to infection from any infected individual.
When a susceptible becomes infected (labeled I), it is immediately infectious. Upon
“cure”, an individual is labeled S and is immediately once again susceptible. This is
a homogeneous model, where every individual has the same probability of cure or,
if susceptible, of infection, and each infected individual has the opportunity to infect
each susceptible individual.
The deterministic SIS model was introduced by Ross (1915). It leads to a logistic

curve which predicts extinction of the infection whenever a basic reproductive ratio
R¡ 1, and predicts a steady-state endemic infection level if R¿ 1 whenever the initial
proportion of infected individuals is positive.
The stochastic SIS model was introduced by Weiss and Dishon (1971). It is a contin-

uous time Markov birth-and-death process (Cavender, 1978) used to model epidemics,
see for example Ball (1999) Jacquez and Simon (1993) Kryscio and LefFevre (1989)
and NHasell (1996, 1999) and also transmission of rumors (Bartholomew, 1976) and
chemical reactions (Oppenheim et al., 1977).
The long-term behavior of the deterministic and stochastic versions of the SIS model

are entirely diJerent. In the stochastic SIS model, the infection becomes extinct with
probability one, regardless of the parameters of the model. However, the time to ex-
tinction depends on the infection and cure rate parameters, and can be extremely large.
The probability distribution of the number of infected individuals, during the long time
until extinction, is sometimes approximated by the distribution under the condition that
extinction has not occurred, which has been called the quasi-stationary distribution.
The concept of the quasi-stationary distribution of a continuous-time Markov process
was introduced by Darroch and Seneta (1967) for 0nite state-space chains, and was
0rst applied to epidemics by Kryscio and LefFevre (1989), whose work was extended
by NHasell (1999) using asymptotic approximation.
Epidemic models for computer viruses have been investigated since at least 1988.

Murray (1988) appears to be the 0rst to suggest the relationship between epidemiology
and computer viruses, although he did not suggest any speci0c models. More recently,
Kephart and White (1991, 1993) and Kephart et al. (1993) have investigated SIS
models for computer virus spread.
In this paper we analyze a birth-and-death process with reintroduction to model

computer virus spread. This is a variation on the model of Kephart and White (1991,
1993). We assume an SIS model, where any susceptible computer can become infected,
and any cured computer is immediately susceptible. The model is introduced in Section
2, followed by an analysis of the model in Section 3. The results are illustrated by
simulations in Section 4, followed by a discussion of potential further research.

2. The SIS model with reintroduction

Let the number of computers be n, the infection rate for any infected–susceptible pair
r, and the cure rate for any infected computer c. We will model the SIS model as an
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n+1 state continuous time Markov process, where the states denote the number of infected
machines. We can represent the process as a birth-and-death process with birth rates

�i = ri(n− i)

and death rates


i = ci;

for i=1; : : : ; n− 1. The parameter c is interpreted as the cure rate for a single infected
computer, and r is interpreted as the infection rate from a particular infected computer
to a particular susceptible computer. It is important to note that the total infection rate
for a susceptible computer is r times the size of the infected population, which may
be of order rn.
Kephart and White studied a similar model both analytically and with simulations.

They found that, under certain conditions, the infected population initially grew rapidly.
In fact, in the early stages of an epidemic, the process is well approximated by a
branching process, and thus exhibits an exponential growth rate. The branching pro-
cess approximation is sometimes called Kendall’s approximation (Kendall, 1956), and
has been rigorously established for many stochastic epidemic processes (Ball, 1983a, b;
Ball and Donnelly, 1995; Martin-LNof, 1986; Scalia-Tomba, 1985; von Bahr and Martin-
LNof, 1980). After the rapid growth phase, the epidemic appeared to reach an equilib-
rium. However, since state 0 is absorbing and the state space is 0nite, the process will
become absorbed in state 0 with probability one, i.e. the infection will become extinct.
Since extinction is certain, this apparent equilibrium is temporary, and the situation
represents a case of “metastability”, where a temporary equilibrium or quasi-stationary
distribution persists for a long time until a transition occurs to a 0nal equilibrium,
which in our model is extinction. In order to study this temporary equilibrium an-
alytically, we modify the model by allowing the infection to restart with a rate a
when the infected population size is zero. This is mathematically convenient, because
it eliminates the absorbing state, so the infected population size has a non-trivial lim-
iting distribution, which serves as an approximation to the temporary equilibrium dis-
tribution. The addition of this “reintroduction parameter” may also make the model
more realistic. This corresponds to the possibility that the infection is “archived”
either intentionally or unintentionally and reintroduced at a later time. If we consider
infection to be more broadly de0ned than infection by a speci0c virus, but rather in-
fection by any computer virus, then reintroduction corresponds to the introduction of a
new virus. This is perhaps the most appropriate application to consider for this model.
Note that the SIS model is particularly appropriate if one treats “virus infection” as

any infection by any virus. In this case, short of taking a computer oJ the network,
any cured computer is, in principle, immediately susceptible, due to the introduction
of new viruses.
The revised model is a birth-and-death Markov process with

�0 = a;

�i = ri(n− i); i = 1; : : : ; n− 1;


i = ci; i = 1; : : : ; n:



6 J.C. Wierman, D.J. Marchette / Computational Statistics & Data Analysis 45 (2004) 3–23

The epidemic process with reintroduction can serve as an approximation for the meta-
stable state in the epidemic process without reintroduction. First, the two processes are
identical until the epidemic process without introduction becomes extinct, after which
the epidemic with reintroduction again becomes an active epidemic after a random
waiting period. Thus, the epidemic with reintroduction will always have a greater or
equal number of infected individuals than the epidemic without reintroduction. So, the
distribution of the epidemic with reintroduction is stochastically larger than that of the
epidemic without reintroduction at all times. On the other hand, the epidemic with
reintroduction does occasionally become extinct for a short time, then grows rapidly
up to the temporary equilibrium of the epidemic without reintroduction. Because of the
(relatively short) time spent with low infected population sizes, the stationary distribu-
tion of the epidemic with reintroduction will tend to have (slightly) lower population
sizes than the temporary equilibrium of the epidemic without reintroduction. Thus, the
stationary distribution can be expected to be a good approximation to the distribution
in the metastable state, but has the advantage that it can be studied analytically in
terms of its parameters. Figs. 4 and 5 show simulation results that con0rm the validity
of the approximation for some realistic parameter values.
The form of the stationary distribution is given by the standard formula (see, e.g.

Ross, 1996, pp. 253–254)

P0 =
1

1 +
∑n

i=1 �0�1 · · · �i−1=
1
2 · · · 
i ;

Pk = P0
�0�1 · · · �k−1


1
2 · · · 
k :

Calculating the factor in Pk yields

�0�1 · · · �k−1


1
2 · · · 
k =
ark−1(n− 1)!
kck(n− k)!

:

Further calculations can be made, with the help of Mathematica, to get a closed
form solution to the probabilities. It can be shown that

P0 =
c

c + apFq[{1; 1; n− 1}; {2};−r=c] ; (1)

where pFq is a generalized hypergeometric function (see Wolfram, 1996, pp. 750–751).
In this case p= 3 and q= 1. Similarly

Pk =
ark−1(n− 1)!

ck−1k(n− k)!(c + apFq[{1; 1; n− 1}; {2};−r=c]) : (2)

These expressions can be used to calculate various functionals of the distribution.
For example, the mode can be obtained by solving Eq. (2) for a maximum using
Mathematica’s optimization solver (noting that Mathematica treats the function as a
continuous one, while in reality it is discrete). The mean and variance of the distribution
are also available, either in closed form using Mathematica or numerically. Section 4
demonstrates a close agreement between this analysis and simulations.
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We can get an instructive approximation to P0 through the following calculation.
Recall that

P0 =
1

1 +
∑n

k=1 ar
k−1(n− 1)!=kck(n− k)!

=
c

c + a(n− 1)!
∑n

k=1(r=c)
k−1=k(n− k)!

: (3)

Writing the sum in Eq. (3) as

f(x) =
n∑
i=1

xi−1

i(n− i)!
=

n−1∑
i=0

xn−i−1

(n− i)i!
;

we recognize this as an integral (suppressing the constant)∫
f(x) dx =

n−1∑
i=0

xn−i

i!
∼ xne1=x;

so diJerentiating both sides gives

f(x) ∼ xn−1e1=x(1 + x): (4)

Plugging 4 into 3 we have

P0 ∼ c
c + a(n− 1)!( rc )

nec=r( rc + 1)
: (5)

3. Analysis

To obtain an approximation of the typical number of infected computers, we want
to evaluate a measure of central tendency of the limiting distribution. Since the expres-
sion for the mean obtained from Mathematica in terms of generalized hypergeometric
functions does not contribute to our understanding, and the median may only be com-
puted numerically, we determine the mode of the limiting distribution, which is given
by a relatively simple formula that is easily interpreted. However, note that further
study, later in this section, shows that the distribution is well approximated, for some
parameter ranges, by Poisson and Normal distributions, for which the mode and mean
(and, for the Normal distribution, the median as well) coincide.

3.1. The mode

Using the standard approach for 0nding the mode of the binomial and Poisson
distributions, we consider the ratio of two successive probabilities:

Pk+1

Pk
=

(a=(k + 1))(rk=ck+1)((n− 1)!=(n− k − 1)!)
(a=k)(rk−1=ck)((n− 1)!=(n− k)!)

;

=
kr(n− k)
(k + 1)c

:
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Fig. 1. Sketch showing the presumed shape of the distribution.

To determine when the ratio is =;¿ ; or ¡ 1, we solve for k in the equation

kr(n− k)
(k + 1)c

= 1

⇔ rnk − rk2 = ck + c

⇔ rk2 + (c − rn)k + c = 0

⇔ k± =
−(c − rn)±

√
(c − rn)2 − 4rc
2r

: (6)

The ratio is greater than one for values of k in the interval between the two solutions,
so the probabilities Pk are nondecreasing from �k−	 to �k+	. The probabilities decrease
for k ¡ �k−	 and k ¿ �k+	. Thus, the mode is either 0 or �k+	. By choosing the
reintroduction rate parameter suTciently large, the probability of being in state zero
can be made as small as desired, so in this case the mode is �k+	. Note that k± are
independent of the reintroduction rate a.
Considering the terms that make up k±, we note that

−(c − rn)
2r

=
n
2
− c

2r
;

is somewhat less than half the population size, while√
(c − rn)2 − 4rc

2r

is slightly less than the 0rst term. Thus, the interval of increasing probabilities covers
nearly the entire range of population sizes, if r and c are 0xed, in which case the
mode is near n, the population size. If c grows linearly with n, then the mode can
be signi0cantly less than n (see Fig. 1), which means the infection becomes endemic,
with a stable proportion of the population infected.
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Fig. 2. The mode calculated using Eq. (6) with r = 0:01 and n= 100 as a function of c. The proportion of
infected machines is plotted on the y-axis.

As can be seen in Fig. 2, the mode of the number of infected machines is roughly
linear in the cure rate, for 0xed r and n.

3.2. Probability distribution approximations

As seen in Eq. (3), the stationary distribution of the birth-and-death process modeling
the number of infected computers depends on the cure and infection rates only through
their ratio c=r. (This is intuitively clear because c and r are both rates in the Markov
process setting, and rescaling time would not change the stationary distribution.) Since c
is the cure rate per individual while r is the infection rate from each infected individual,
it is appropriate to consider c=r as a function of n to achieve a balance between the
total infection and total cure rates for the population. In this section, we will discuss
three approximations for the stationary distribution, which are valid in four diJerent
ranges of c=r. While we sketch the ideas of the proofs here, the details will be deferred
to an Appendix.

3.2.1. Small c=r (Poisson approximation)
If the cure rate is suTciently small relative to the infection rate, intuitively one

would expect nearly all the population to be infected most of the time. This suggests
that a Poisson distribution, often used to model occurrences of rare events, may be
appropriate for the number of uninfected computers. The following result makes this
precise.
Let Xn and Yn = n − Xn denote the number of infected and uninfected computers

respectively, when the process is in the invariant distribution {Pi;n: i = 0; 1; : : : ; n}.
(We use the subscript n to indicate the possible dependence upon the population
size n.)

Lemma 1. If limn→∞ c=r = b¿ 0, then limn→∞ P[Yn = i] = (bie−b=i!) ∀i= 0; 1; 2; : : : ,
i.e. Yn asymptotically has a Poisson(b) distribution.
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Proof (Sketch). Denoting the distribution of Yn by {Qi;n: i = 0; 1; : : : ; n}, we have

Qi;n = Pn−i; n =
1
Zn

a
c

1
n− i

( r
c

)n−i−1 (n− i)!
i!

for i=0; 1; : : : ; n, with Qn;n=P0; n=1=Zn, where Zn is a normalizing factor. It is useful
to express the other Qi;n as multiples of Q0; n as

Qi;n =
n

n− i

(c
r

)i 1
i!
Q0; n; (7)

where Q0; n now plays the role of a normalizing factor. Without the factor n=(n − i)
we would have Q0; n = e−c=r exactly, giving us the Poisson(c=r) distribution. Since
n=(n − i) → 1 as n → ∞ for each 0xed i = 0; 1; : : :, and c=r → b, it suTces to show
that Q0; n → e−b. This is accomplished in the Appendix, using a geometric series to
bound the tail probability and thus the normalizing factor.

The approximation by a Poisson distribution leads to the interpretation that it is a
rare event that a particular computer is not infected, when c and r are 0xed. This
would correspond to a particularly virulent disease, and does not correspond well to
observations of computer virus infections, in which a small proportion of the population
is infected at a given time.
Given the Poisson approximation result when c and r are constant, it is clear that we

must consider cases where c and r, or at least the ratio c=r, depends on the population
size n, to achieve a suitable balance between infection and curing processes. This is
intuitive if one recalls that the cure rate c is per individual, while the total infection
rate per individual is a multiple of r.
Remark: For completeness, we note that if c=r → 0 as n → ∞, a simpler anal-

ysis than above shows that the probability that all computers are infected converges
to one.

3.2.2. Moderate c=r (Normal approximation)
To achieve a better balance between the cure rate and total infection rate, we con-

sider the case where �n= c=r → ∞ as n→ ∞. The parameter b appeared as the mean
of the approximating Poisson distribution in the case where c=r was asymptotically
constant. Since the Poisson distribution becomes asymptotically Normal as the mean
converges to in0nity, it is natural to expect that the number of uninfected computers
among n total computers, denoted here by Yn, has an approximate Normal distribution
for some rates of �n= c=r → ∞. The following proof is based on converting the Pois-
son approximation into a Normal approximation, under the condition that c=r = o(n)
as n→ ∞.

Lemma 2. If �n = o(n), then limn→∞ P[a¡ (Yn − �n)=
√
�n ¡b] = �(b) − �(a) for

all −∞¡a¡b¡∞, where � denotes the standard Normal cumulative distribution
function.
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Proof (Sketch). For convenience, we denote the frequency function of the Poisson(�n=
c=r) distribution by {�i;n: i = 0; 1; 2; : : :}. We may then calculate

P
[
a¡

Yn − �n√
�n

¡b
]
= P[�n + a

√
�n ¡Yn¡�n + b

√
�n]

=
�n+b

√
�n∑

i=�n+a
√
�n

Qi;n

=
�n+b

√
�n∑

i=�n+a
√
�n

n
n− i

(c
r

)i 1
i!
Q0; n:

Under our hypothesis, however, Q0; n → 0, but we can again bound the sum of proba-
bilities to show that

ec=rQ0; n = 1 + o(1):

Thus, we have

P
[
a¡

Yn − �n√
�n

¡b
]
= (1 + o(1))

�n+b
√
�n∑

i=�n+a
√
�n

n
n− i

�i;n:

Since �n + b
√
�n = o(n), then 16 n=(n− i)6 1 + o(1) for all i6 �n + b

√
�n, so

P
[
a¡

Yn − �n√
�n

¡b
]
= (1 + o(1))

�n+b
√
�n∑

i=�n+a
√
�n

�i;n:

However, as n → ∞, the Poisson(�n = c=r) distribution, normalized, is asymptotically
Normal, so

�n+b
√
�n∑

i=�n+a
√
�n

�i;n → P [a¡W ¡b];

where W has a standard Normal distribution.

This result shows that the number of infected computers is approximately Normal
with mean n− c=r and variance c=r, when c=r → ∞, c=r=o(n). However, in this case,
we still have the proportion of the population that is infected, (n− c=r)=n, converging
to 1.

3.2.3. Large c=r (Normal and logarithmic limit)
We now consider the case when the cure rate increases roughly linearly with the

population size. From the analysis of the mode, we see that typically a stable propor-
tion of the population will be infected. In this situation, with approximately �n infected
computers, 0¡�¡ 1, the population cure rate is approximately c�n, while the popu-
lation infection rate is approximately r�(1− �)n. Stability can be achieved when these
are balanced.
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We consider c=r = nd + o(n) as n → ∞, and 0nd that the distribution has quite
diJerent behavior when d¡ 1 than when d¿ 1.

Lemma 3. If �n = nd + o(n); d¡ 1, then limn→∞ P[a¡ (Yn − �n)=
√
�n ¡b] =

�(b)− �(a):

Proof (Sketch). As in the proofs of Lemmas 1 and 2, we consider the number of
uninfected computers, viewing its distribution as closely related to the Poisson(�n)
distribution

Qi;n =
n

n− i
�i;nKn;

where Kn normalizes the sum to produce a probability distribution. For d¡ 1, we can
choose !¿ 0 such that !¡d and d+ !¡ 1, and use ChernoJ bounds to show that

P
[|Yn − nd|¿!n

]
6 e−"n

for some "¿ 0. Thus, nearly all the probability is concentrated near nd, where the
factor n=(n − i) is near 1=(1 − d). This can be used to establish that the normalizing
constant is approximately 1− d, so

P
[
a¡

Yn − �n√
�n

¡b
]
= (1 + o(1))

�n+b
√
�n∑

i=�n+a
√
�n

�i;n → �(b)− �(a)

as �n → ∞ as in the proof of Lemma 2.

Lemma 4. If �n = nd+ o(n); d¿ 1, then

lim
n→∞P[Xn = k] =

a=kdk−1

1− log(1− 1=d)
; k = 0; 1; : : : :

Proof (Sketch). Note that

Pk;n =
a
k

( r
c

)k−1 (n− 1)!
(n− k)!

1

3F1({1; 1; n− 1}; {2};−r=c) :

Under our hypothesis,( r
c

)k−1 (n− 1)!
(n− k)!

→
(
1
d

)k−1

:

Note that 3F1({1; 1; n − 1}; {2};−r=c) is a normalizing factor which is independent
of k. Since the series of limiting probabilities converges in k geometrically, limn→∞
3F1({1; 1; n − 1}; {2};−r=c) is the normalizing constant for the limiting distribution,
which can be computed by standard series convergence methods from calculus.

This limiting distribution diJers from the logarithmic distribution,

P[X = k] =
# k

−k log(1− #)
k = 1; 2; : : : ;

where 0¡#¡ 1, due to the atom at zero (and necessary renormalization). The log-
arithmic distribution is discussed in Johnson et al., 1992, Chapter 7. It arises in a
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model strongly related to ours, being the steady-state distribution of a birth and death
process with rates �i = �i, i6 1, and 
i = 
i, i¿ 1, but 
1 = 0, a process appearing
in Caraco (1979) in the context of animal group dynamics. We are not aware of these
distributions arising in previous analyses of computer virus epidemic models.

4. Simulation

The National Computer Security Association reports a computer virus infection rate
of approximately 35 infections per 1000 computers per month. See the web page at
www.webmastersecurity.com/ncsa97virusprevalencesurveya.htm

for the 1997 report. The ICSA computer virus prevalence report, available at
www.trusecure.com/html/tspub/pdf/vps20001.pdf,

reports slightly diJerent, but similar, rates (see Table 1). The Sophos computer virus
lab
www.sophos.com/virusinfo/whitepapers/prevention.html

reports that in the second quarter of 2000, approximately 800 new viruses were in-
troduced each month, with over 50,000 known viruses in existence. Telcordia Tech-
nologies (www.netsizer.com) reports the number of machines on the Internet to be 127
million as of October 2001. Other sources of statistics on virus prevalence are available
at http://www.securitystats.com/virusstats.asp and http://www.virusbtn.com/.
These reports, along with information on the propagation methods of known viruses,

allow one to produce ballpark estimates for n, r and a. One then would be interested
in studying the properties of the system as a function of c. Numbers are available
for various of these parameters for diJerent intervals, allowing some determination of
trends and rates of change.
Kephart and White (1993) report some virus prevalence data from 1991 which shows

a relatively low level of virus infections (see Fig. 3). It should be noted that the spike
in the middle is interpreted to be the result of a higher level of vigilance and reporting,
as opposed to an actual increase in the number of viruses.
Some simulations can illustrate the model. In order to simulate this process, we take

a two step approach. First, we draw a random time, t ∼ exp(r + c), corresponding
to the time until the next event. Then we Vip a (biased) coin to determine if the
event was an infection or a cure: we draw a uniform random variable y and test if
y¡Rn;m=(Rn;m+Cm) (infection) or y¿Rn;m=(Rn;m+Cm) (cure), where Rn;m=r(n−m)m
and Cm = cm. In the event that m= 0, we set m to 1 at time t ∼ exp a later.

Table 1
Rate of infection per 1000 computers in the 0rst two months of each year

Year Rate of infection

1996 10
1997 21
1998 32
1999 80
2000 91

http://www.webmastersecurity.com/ncsa97virusprevalencesurveya.htm
http://www.trusecure.com/html/tspub/pdf/vps20001.pdf
http://www.sophos.com/virusinfo/whitepapers/prevention.html
http://www.netsizer.com
http://www.securitystats.com/virusstats.asp
http://www.virusbtn.com/
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Fig. 3. Number of virus incidents reported per 1000 PCs for two speci0c viruses, Stoned (open circles) and
Michelangelo (triangles), and all other viruses (closed circles) during two week periods ending with the
indicated date. From Kephart and White (1993), with permission (? 1993 IEEE).

Fig. 4. A simulation run with parameters a = 1, r = 0:05, c = 1 and n = 100.

Set a = 1, r = 0:05, c = 1 and n = 100. In this case, Eq. (6) gives an estimate for
the mode of 79.75 infected computers. Note that since k is an integer, this says that
the mode falls at 80 for these parameters. Fig. 4 shows the time progression of the
simulation. For these parameters Mathematica gives a value of P0 = 7× 10−34, while
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Fig. 5. A kernel estimator 0t to the 0nal 8536 observations of the simulation depicted in Fig. 4. The estimate
for the mode given in Eq. (6) is depicted by a solid line, with the mode of the kernel estimator indicated
by a dotted line. A Normal density with parameters equal to the sample mean and standard deviation for
these data is depicted as a dotted curve. A “+” is drawn at the mode of the Normal density.

Eq. (5) gives a value of 1:7 × 10−34. Thus the approximation agrees to an order of
magnitude with the “exact” value provided by Mathematica (note that even in this
“exact” calculation, the transcendental functions must be approximated numerically).
Note that from a practical standpoint, these values indicate that the time to extinction
for these values of the parameters is so large as to be of no practical consequence.
In order to estimate the mode of the limiting distribution, we consider the time steps

from t=10 on. A kernel estimator is 0t to these data and plotted in Fig. 5. The mode
of the kernel estimator is at 79.20, in agreement with the analysis.
Solving Eq. (2) for a maximum, using Mathematica’s numerical optimization solver,

results in a value of 80.25, in agreement with the above analysis (remembering that
Mathematica is treating the function as a continuous one, while in reality it is discrete).
The mean and variance of the distribution are also available, either in closed form

using Mathematica or numerically. For the parameters of the simulation we obtain a
mean 79.75 (compared to the simulation value of 79.20) and a variance of 20.322
(compared to the simulation value of 25.213). Thus the theory is in close agreement
with the simulation.
To illustrate the large c behavior, Figs. 6–8 show the results of a simulation with

a=1; r=0:008 and c=1. This shows the tendency of the epidemic to die out with large
c. The reintroduction rate is relatively large as well, causing the infection to start up
again quickly after an extinction. Note that as many as 15% of the computers become
infected with these rates. Fig. 8 shows the logarithmic distribution for the number of
infected machines.
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Fig. 6. A similar simulation to that in Fig. 4 with a = 1; c = 1; r = 0:008 and n = 100.
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Fig. 7. A subset of the simulation of Fig. 6.

For small c behavior, Figs. 9 and 10 show close agreement between the theoretical
and simulation values for Qi;n of Eq. (7). This demonstrates the closeness of the Poisson
approximation even for moderate values of n.



J.C. Wierman, D.J. Marchette / Computational Statistics & Data Analysis 45 (2004) 3–23 17

Number of Infected Machines

D
en

si
ty

0 5 10 15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 8. A histogram of the number of infected machines parameters c = 1; r = 0:008; a = 1 and n = 100.
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Fig. 9. Qi;1000 for a=30, c=0:01 and r=0:018. The theoretical values from Eq. (7) are depicted as a solid
curve, with the simulation values depicted as a dotted curve. The curves essentially overlap in this 0gure.

5. Discussion

We proposed an epidemic model for the prevalence of computer viruses in a ho-
mogeneous closed population of computers. We determined the invariant distribution
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Fig. 10. The diJerence between the theoretical Qi;1000 (Eq. (7)) and simulation values, from the simulation
of Fig. 9. As in that simulation, a = 0:03, c = 0:001 and r = 0:01.

of the number of infected computers, and found approximations to this distribution
for diJerent ranges of parameters of the model. A key feature of the model is the
existence of a threshold value of c=r at which a dramatic change occurs in the distri-
bution, from approximately logarithmic (which has a 0nite mean regardless of popula-
tion size) to asymptotically normal (when properly standardized), corresponding to the
mean increasing without bound as the population size increases. The threshold may be
expressed as c=r = n. This implies that the ratio of cure rate to infection rate must be
much larger to prevent a widespread infection in a large population than in a small
population.
Due to the homogeneity assumed in the model, it is more applicable to local networks

or clusters of computers, where reintroduction may correspond to infection by a virus
from outside the local network. A model where the population increases in time might
be more appropriate for the entire Internet.
A more realistic model might have diJerent levels of subgroups of computers, which

communicate among themselves at diJerent rates. For example, a three level model
might consist of departments within a company, companies, and the entire Internet.
DiJerent computers (or groups of computers, such as those with speci0c operating
systems), might have diJerent probabilities of becoming infected when exposed. Pre-
ventative action (“vaccination” or the installation of anti-virus software) could be taken
into account. In the literature on epidemics, each of these eJects has been considered
in some model, but not all combined in any model for which rigorous mathematical
analysis has been done.
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Appendix

Proofs. To 0nish the proof of Lemma 1 we need to 0ll in the details of the Poisson
convergence. To prove that Q converges to a Poisson distribution, however, we must
show that the Qi;n do not all converge to zero as n → ∞ because they contain the
normalizing factor Zn.
Choose In ¿c=r suTciently large that In!¿n. Then we may bound the tail proba-

bility by a geometric series to obtain

n−1∑
i=In

Qi;n6
(
c
rIn

)In 1
1− (c=nIn)

n
In!

Q0; n(1 + o(1)):

Note also that Qn;n=Q0; n → 0: Thus,

Q0; n

[
In∑
i=0

(c
r

)i 1
i!

]
6 1 =

n∑
i=0

Qi;n

6Q0; n

[
n

n− In

In∑
i=0

(c
r

)i 1
i!
+ o(1)

]

6Q0; n

[
n

n− In
ec=r + o(1)

]
:

Since In!¿n requires that In → ∞, and we may choose In to be o(n), asymptotically
we have

eb−!lim sup
n→∞

Q0; n6 ec=rlim sup
n→∞

Q0; n6 16 ec=rlim inf
n→∞ Q0; n6 eb+!lim inf

n→∞ Q0; n

for each !¿ 0, so limn→∞Q0; n exists and is equal to e−b. This implies that limn→∞Qi;n
exists and is equal to

bi
1
i!
e−b for i = 1; 2; : : : :
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To complete the proof of Lemma 2, we now verify our assumption, Qo;n=e−c=r =
1 + o(1). First, note that

1 =
n∑
i=0

Qi;n¿Q0; n

[
n−1∑
i=0

(c
r

)i 1
i!

]
;

so

Qo;n6
1∑n−1

i=0 (c=r)i 1i!

=
1

ec=r −∑∞
i=n (c=r)

i1=i!

6
1

ec=r − (c=r)n

n! ec=r

=
e−c=r

1− (c=r)n

n!

:

By Stirling’s Formula

(c=r)n

n!
≈ (c=r)n

√
2�nn+

1
2 e−n

=
1√
2�

(ce
r

)n
n−n−

1
2 = O(n−

1
2 );

if ce=r ¡n, or, equivalently c=r6 n=e. Then

Q0; n

e−c=r
6

1
1− B=

√
n
6 1 +

A√
n
; (8)

for some A; B¿ 0.
For a bound in the other direction

1 =
n∑
i=0

Qi;n

=
In∑
i=0

(c=r)i
1
i!
Q0; n +

n−1∑
i=In+1

Qi;n + Qn;n (9)

for some In ¿c=r. For In = o(n),

In∑
i=0

(c
r

)i 1
i!
Q0; n6

(
n

n− In

)
Q0; n

In∑
i=0

(c
r

)i 1
i!

= (1 + o(1))Q0; n

∞∑
i=0

(c
r

)i 1
i!

= (1 + o(1))Q0; nec=r :
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For the second term in Eq. (9),

n−1∑
i=In+1

Qi;n =
n−1∑
i=In+1

n
n− 1

(c
r

)i 1
i!
Q0; n:

Note that for i¿ In ¿c=r, the factor (c=r)i=i! is decreasing.
As before, use Stirling’s Formula

(c=r)In

In!
≈ (c=r)In

√
2�I

In+
1
2

n e−In
=

1√
2�

(ce
r

)In
I
−In− 1

2
n :

Choose In ≈ 2e(c=r), so c=r ≈ (1=2e)In, then

(c=r)In

In!
≈ 1√

2�

(
1
2
In

)In
I
In− 1

2
n 6

D
2In
:

Then

n−1∑
i=In+1

Qi;n = Q0; n

n−1∑
i=In+1

n
n− 1

(c
r

)i 1
i!

6Q0; n(n− In)n
D
2In

6Q0; nDn22−2e(c=r)

6Q0; nEe−2(c=r):

From Eq. (5), we have

P0 = Qn;n = o(e−c=r):

Combining, we have

16 (1 + o(1))Q0; nec=r + Q0; nEe−2c=r + o(e−c=r)

6 (1 + o(1))Q0; nec=r ;

so, from this and Eq. (8),

1− o(1)6
Q0; n

e−c=r
6 1 +

A√
n
:

Thus we obtain asymptotic normality when c=r → ∞ and c=r = o(n).
For Lemma 4, we need to compute the normalizing constant. To evaluate this nor-

malizing constant, we write the probabilities (ad=r)(1=k)(r=d)k as (ad=r)(1=k)xk using
x = r=d, and sum (1=k)xk as follows. Notice that for |x|¡ 1,( ∞∑

k=1

1
k
xk
)′

=
∞∑
k=1

xk−1 =
1

1− x
= (−log(1− x))′:
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So,
∞∑
k=1

1
k
xk =−log(1− x) + C

and evaluating at x = 0 shows that C = 1. Thus

lim
n→∞ (c + aFn) =

ad
r

(
1− log

(
1− r

d

))
if r ¡d, and

lim
n→∞Pk =

(1=k)( rd)
k

1− log(1− r=d)
:

The mean infected population size in the limiting distribution is∑∞
k=1 (r=d)

k−1

1− log(1− r=d)
=

1
(1− r=d)(1− log(1− r=d))

=
d

(d− r)(1− log(1− r=d))
; (10)

which is 0nite for r ¡d. Similarly, all moments are 0nite when r ¡d. However, for
r ¿d, the mean infected population size tends to in0nity as n→ ∞.
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